

Impact of anthropogenic activities on insect diversity of disturbed and undisturbed areas of Jhalawar district (Raj.)

Dr. Roopam Kulshrestha

(Associate Professor, Dept. of Zoology, Govt PG College, Jhalawar)

Abstract

The study assessed the impact of anthropogenic activities on insect diversity and abundance of disturbed and undisturbed areas of Jhalawar district Rajasthan. The total number of species collected and identified were 63. The maximum number of species observed were of order Lepidoptera in the disturbed college campus of Jhalawar followed by Hymenopetrea, Odonata, Hemiptera, Orthoptera, Dictyptera, Thysanura, Isoptera & Coleoptera. The total no species collected from undisturbed area was 19nos. The maximum number was of Lepidoptera followed by Coleoptera, Orthopetera, Odonata & Neuroptera. Insects are closely associated with our lives and affect the welfare of humanity in diverse ways.

Keywords- Abundance, Disturbed, Undisturbed, diversity, anthropogenic

Introduction

Biodiversity simply means the diversities or variety of plants, animals, and other living things in a particular area. It is important because everything that lives in an ecosystem is part of our web of life, including humans.

Each species of vegetation and each creature has a place on earth and plays a vital role in the circle of life. Plants, animals, and insect species interact and depends upon one another for what each offer such as food, shelter, oxygen, and soil enrichment.

Insects comprises the largest group of organisms and are involved in various vital ecosystem services. The presence of insects enhances the beauty of nature and our surroundings despite the fact that some of them are harmful to man. Global changes are responsible for wide range of anthropogenic and natural environmental variation.

Jhalawar is in the south eastern part of the state. It was the capital of former princely state of the Jhalawar and is the administrative headquarter of Jhalawar district. Jhalawar was once called brijnagar and was known for its rich natural wealth of vibrant flora and fauna.

The present study emphasizes to investigate the diversity and abundance of insects with special reference to anthropogenic activities of that disturbed and undisturbed area.

Material and methods

The two sites were selected for collection and observation were:

Site 1- College campus of Jhalawar

It was a large campus. It has garden and play ground. Vegetation of college campus comprises of various types of trees bushes and some medicinal plants in the botanical Garden. The campus is fully disturbed by movement of students, other human activities include -construction of new classrooms, regular cleaning etc.

Site 2- Jhiri area

Volume-9, Issue-11 November - 2022

It is hilly area and hills are covered with bushes and wild plants. We observed cattle grazing at the sometime. The base of hills had bamboo trees and a small temple.

Insects were collected by using different nets- sweeping, bait, picking etc. Twice in a year from sept-oct and in March -April in the year 2011-12. Identification of insects were done at MPUOA. Abundance of insects were also noted.

Results and discussion

Site 1- College campus of Jhalawar is disturbed site. The total number of insects identified was 63 belonging to 10orders 29 families and 50 species. The largest number of insects identified were of order lepidoptera dominating was *Lampides boetics* and *Terias hecape*.

Some methods used for increasing the biodiversity of garden environment (artificial nest, small ponds etc.) may be very effective. There is a positive effect of human- mediated disturbances on the Exotic richness in center Chile (Estay et. al. 2012).

	INSECT IDENTIFIED		ABUNDANCE (Approx. no. of insects)		29.	Odenata	Libellalidae	Orthetrum chrysis	4		
	INSECT IDESTIFIED				30.	Odenata	Libellulidae	Crocothemis servilla	11	9	
				Esh Marsh Sent Oct		31.	Odonata	Libellulidae	Trithenix awora	14	11
S.NO.	ORDER	FAMILY	GENUS SPECIES	2011-12	2011-12	32.	Odenata	Coenagrionidae	(Fabricius)	13	10
1.	Lepidoptera	Pieridae	Isias marianne (Linnanui)	22	15	33.	Odonata	Comagriouidae	Ischnura elegans	17	11
2.	Lepidoptera	Pieridae	Catopsilia pyranthe	8	5	34.	Hymenoptera	Apidae	X)locopa fenezirata	9	6
3.	Lepidoptera	Pieridae	Catopsilia pomona	30	23	35.	Hymenoptern	Apidae	Apis florea	26-30	25-28
4.	Lepidoptera	Pieridae	Terias kecabe (Linnaeus)	184	155	36.	Hymenoptera	Apidae	Apis dorsata	46	42
5.	Lepidoptera	Pieridae	Anaphaeis aurota (Fabricius)	12	7	37.	Hymenoptera	Sphecidae	Cercerit sp.	26	21
6.	Lepidoptera	Pieridae	Eurema laeta (Boisduval)	16	14	35.	Hymenoptera	Sphercichae	Lirit sp.	92	55
7.	Lepidoptera	Pieridae	Appias olbino (Boixdural)	22	18	39.	Hymenoptern	Vespidae	Ropalidia sp.	38	30
8.	Lepidoptera	Nymphalidae	Antonia lemonias	27	26	40.	Hymenoptera	Formicidae	Amictus ap.	15	12
9.	Lepidoptera	Nymphalidae	Amona (Prezz) allas	15	13	41.	Hemipters	Pentatomidae	Halys parnus (chopra)	22	18
10			(Lumanu)			42.	Hemiptera	Pentotomidae	Erthesina fullo (Thunberg)	56	50
10.	Lepidoptera	Nymphalidae	Anoxie alvone	15	15	43.	Hemiptera	Lygacidae	Spilostethus pandurus	55	48
	Lepidoptera	Nymphalidae	Janonia oriznya	54	30	44.	Beniptera	Rethrviidae	Acanthaspis sp.	24	20
12.	Lepidoptera	Nymphalidae	(Linnanu)	42	35	45.	Hemiptera	Reduviidae	Rhinocoris sp.	46	40
13.	Lepidoptera	Nymphalidae	Telchinia violae (Fabricius)	32	30	46.	Diptera	Tabanidae	Unidentified	12	11
14.	Lepidoptera	Nymphalidae	Parantica aglea	12	11	47.	Diptera	Stratonyidae	Unidentified	18	15
15.	Lepidoptera	Papilionidae	Pachliopta aristolockise	11	9	45.	Diptera	Muscidae	Maca domestica	>100	>150
16.	Lepidoptera	Papilionidae	Papilio deveoleus	11	10	49.	Diptera	Drosophilidae	Drosophila melongester	51	58
17.	Lepidoptera	Papilionidae	Zetides agamenmon	12	10	50.	Diptera	Culicidae	Anapheles sp.	>125	>200
18.	Lepidoptera	Lycaenidae	Lampides boeticus	225	185	51.	Diptera	Culicidae	Culex sp.	>125	>200
19.	Lepidoptera	Lycsenidae	Catochyxops enjus	65	60	52.	Diptera	Asilidae	Unidentified	>75	>1:00
20.	Lepidoptera	Lycsenidae	Castalius reaimen	5	4	53.	Orthoptera	Accididae	Catantops sp.	18	1.5
21.	Lepidoptera	Arctiidae	Cherhesia pulchella	3	2	54.	Orthoptera	Acrididae	Acrida explatata	25	25
22.	Lepidoptera	Noetuidae	Belicoverpa zea	5	4	55.	Orthoptera	Tettigonidae	Himertula pallisienata	16	14
23.	Odonata	Libelhildae	Brudinopyga geminata	14	12	56.	Orthoptera	GryIlidae	Grallus compostris	37	33
24.	Odonata	Libelhlidae	Neurothemia intermedia (Ramhur)	4	3	57.	Orthoptera	Gryllidae	Halochlera indica	32	29
	01	12.0.01	Bracilythemis cantaminata		10	58.	Orthoptera	Gryllidae	Schistoorra gregania	22	19
25.	CAGINE	Lioennase	(Tehnicus)	12	10	59.	Dictyoptera	Blattidae	Periplaneta americana	35	32
26.	Odonata	Libelhilidae	Orthetrus protocous (Rambar)	4	2	60.	Dictyoptera	Mantidae	Mantis religiosa	0	0
27.	Odonata	Libelhidae	Orthetrum elaucum	15	11	61.	Thysenura	Lepismatidae	Lepisma saccharina	>50	>65
						62.	Isoptera	Termitidae	Provisiontermes sp.	>100	>100
28.	Odonata	Libellulidae	Orthetrum sabina	15	10	63.	Coleoptera	Buprestidae	Chrysocoris chinomis	0	2
								-	-		

Site 2- The Jhiri area (hilly area) was undisturbed by human activities except cattle grazing. The total number of insects identified were 19. The dominating was Hepidoptera followed by Odonatas of 3 orders 11 families. Here we observed few beetles which were not found in disturbed site.

Magagula and Nzima (2014) investigated that heterogenous agro ecosystems have the capacity to maintain high insect diversity despite alterations due to human activities.

Tak and Srivastava (2015) studied that anthropogenic pressures, holy rituals and tourism have adverse impact on the water quality which directly affect the diversity of insect fauna of the sacred lakes.

Volume-9, Issue-11 November - 2022

Email- editor@ijarets.org

Jeevan et. al. (2013) carried out study on biodiversity of butterflies in Mandagadde of Shivamogga of Karnataka. Many butterfly species are strictly seasonal and prefer only a particular set of habitats and they are good indicators in terms of anthropogenic disturbances and habitat destruction. The richness and diversity of butterfly species is proportional to the food plant diversity, richness of flowers and intensity of rainfall. Unfortunately, butterflies are threatened by habitat destruction and fragmentation

An	Sites / thropogenic Activity	Site 1: COLLEGE CAMPUS	Site 2: JHIRI AREA	
1.	Cattle grazing	*	* * *	
2	People movement	* * *	* *	
3.	Vehicular movement	* *	8	
4.	Building construction	* *	*	
5.	Gardening/ plantation	* * *	*	
6.	Cutting of trees	*	*	
7.	Burning of garbage/ fuel	* *	2	
8.	Sweeping/ cleaning	* *		
	1	17	08	

Discussion

Habitat loss and destruction, usually as a direct result of human activities and population growth, is a major force in the loss of species, population, and ecosystem. Michael J Sameats shows insects survival prior to human impact and early human impact on European landscapes.

The result showed that the disturbed area had more of Lepidoptera diversity than undisturbed area, the reason was that disturbed area (college campus) had more favourable habitat (patched of garden, botanical garden, and variety of plants in the campus). But the diversity of Coleopterous was less because of student's movements and other anthropogenic activities (such as construction, vehicular movement, human activities).

Jaganmohan (2013) showed that domestic gardens may play a vital role in supporting urban insect biodiversity, despite their small size.

		ABUNDANCE			
	IN	(Approx. no. of insects)			
S.NO.	ORDER	FAMILY	LY GENUS SPECIES		Sept Oct.
				2011-12	2012-13
Ι.	Lepidoptera	Pieridae	Terias hecabe (Linnaeus)	15	12
2.	Lepidoptera	Pieridae	Catopsilia pomona	0.5	04
3.	Lepidoptera	Nymphalidae	Junonia lemonias	26	21
4.	Lepidoptera	Nymphalidae	Junonia almona	04	03
5.	Lepidoptera	Nymphalidae	Junonia orithya	0.5	04
6.	Lepidoptera	era Nymphalidae Damaus chrysippus (Linnaeus)		10	08
7.	Lepidoptera	Papilionidae	Papilionidae Papilio demoleus		02
8.	Lepidoptera	Lycaenidae	Lampides boeticus	22	19
9.	Odonata	Libellulidae	ellulidae Neurothemis intermedia (Rambur)		08
10.	Odonata	Libellulidae	Brachythemis cantaminata (Fabricius)	06	05
11.	Odonata	Libellulidae	Trithemis aurora	07	06
12.	Coleoptera	Tenebrionidae	ebrionidae Adesmia 1p.		15
13.	Coleoptera	Tenebrionidae	fenebrionidae Rhytinota sp.		18
14.	Coleoptera	Carabidae	Diplocheila sp.	10	14
15.	Coleoptera	Meloidae	Mylabris puslutata	20	25
16.	Orthoptera	Acrididae	Catantops sp.	17	15
17.	Orthoptera	Acrididae	Acrida exalatata	28	24
18.	Orthoptera	Tettigonidae	Himertula pollisignata	14	11
19.	Neuroptera	Myrmeloutidae	Creoleon sp.	16	13

KEY:

10.000		1215-02110	3 323
0-20%	*	21-40% **	41-60% ★ ★ ★
61-80%	****	81-100% * * *	**

Volume-9, Issue-11 November - 2022

Email- editor@ijarets.org

ISSN 2349-2819

Sites	No. of orders	No. of families	No. of genus	No. of species	Total abundance (2011-12)
SITE 1	10	29	52	50	4464
SITE 2	05	11	17	14	470

The table illustrates the comparative study of number of orders, families, genus and species; and total abundance of the years 2011-12 of the two sites.

Growth of human population is major factor affecting the environment. Almost all the environmental problems we face today can be traced back to the increase in population in the world. (Miller ,1992). The high standard of living that accompanies the increased production and consumption of goods is the major cause of pollution and environmental degradation (E.O. Wilson, 1994). Tamang (2010) observed 42 species of butterflies at butterfly park , Bannerghatta (Population was not very high .this may be due to change in climatic conditions or impact of human activities).

Conclusion

Insect inhabit all habitat types and play major roles in the function and stability of terrestrial and aquatic ecosystems. There is no doubt that human activities have had a negative impact on biodiversity particularly since the industrial revolution. The destruction of habitat through agriculture and urban sprawl. Although this study is preliminary one, its results are important regarding micro habitant. We conclude that human activities are not always negative to habitat, it can be positive and for that we must focus more on development of patches of garden in disturbed areas. It shows urban green infra structure is used to improve the built environment and provide echo system services.

Reference

Estay S.A., Navarrete S.Aand Toro S.R. 2012. Effects of human mediated disturbances on exotic forest insect diversity in a Chilean mediterranean ecosystem. Biodivers Conserv 21(14):3699–3710.

Jaganmohan M., Vailshery L.S. and Nagendra H. 2013. Patterns of Insect Abundance and Distribution in Urban Domestic Gardens in Bangalore, India. Diversity, 5, 767-778.

Jeevan E.N., Naik K.L., Ashashree H.M. and Sayeswara H.A. 2013. Butterfly Diversity and Status In Mandagadde Of Shivamogga, Karnataka, India

Magagula, C.N. and Nzima B.A. 2014. Interaction Between Habitat Characteristics And Insect Diversity Using Ground Beetles (Coleoptera: Carabidae) And Ants (Hymenoptera: Formicidae) Within A Variety Of Agricultural Habitats. Magagula – Nzima: Interaction between habitat characteristics and insect diversity. 863-876

Miller J.C. 1993. Insect natural history, multi-species interactions and biodiversity in ecosystems. *Biodiversity and Conservation 2 :233-241*

Tak A.S. and Srivastava D. 2015. Diversity and Population Turnover of Insect Fauna in Pushkar Lake in the Aravalli Region of Rajasthan, India RJRS 4:308-312.

Tamang D. 2010. Butterfly Biodiversity At Bannerghatta National Park. Lake 2010: Wetlands, Biodiversity and Climate Change.